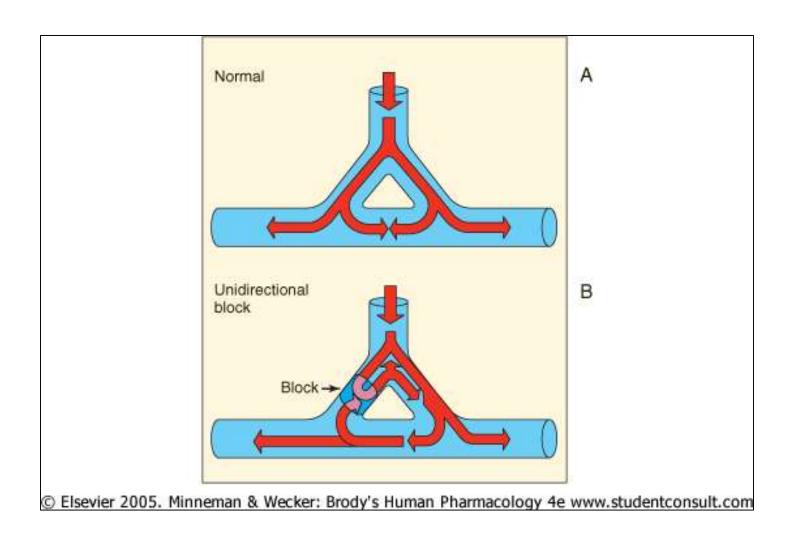
Antiarrhythmic Drugs

Arrhythmia

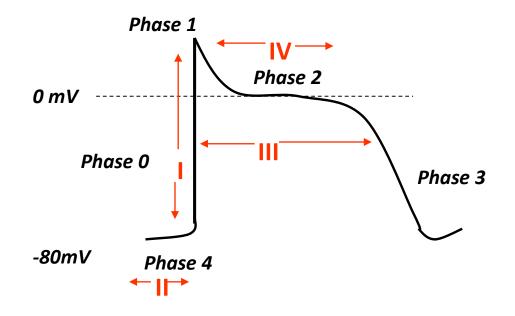
Definition:

- Disturbances in the heart rate, rhythm, impulse generation or conduction of electrical impulses responsible for membrane depolarization
- These disturbances can lead to alterations in overall cardiac function that can be life threatening.


Antiarrhythmic drugs:

Compounds used to prevent or treat cardiac arrhythmias

Mechanism of arrhythmias


- Disturbances in impulse generation may be due to
 - Abnormal automaticity
 - Delayed after depolarizations
- Disturbances of impulse conduction
 - The impulse may recirculate in heart causing repeated activation (re-entry)
 - Conduction blocks

Re-entry phenomenon

Phases of action potential of cardiac cells

- Phase 0 rapid depolarisation (inflow of Na⁺⁾
- Phase 1 partial repolarisation (inward Na⁺ current deactivated, outflow of K⁺)
- Phase 2 plateau (slow inward calcium current)
- Phase 3 repolarisation (calcium current inactivates, K⁺ outflow)
- Phase 4 pacemaker potential (Slow Na⁺ inflow, slowing of K⁺ outflow) 'autorhythmicity'
- Refractory period (phases 1-3)

Classification of antiarrhythmics

- Class I: Sodium channel blockers
- Class II: β-Adrenergic blockers
 - Propranolol, acebutolol, esmolol
- Class III: Potassium channel blockers
 - Amiodarone, bretylium, sotalol
- Class IV: calcium channel blockers
 - Verapamil, diltiazem
- Miscellaneous
 - PSVT: Adenosine, Digoxin
 - AV block: Atropine